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Abstract

A signalised traffic intersection model is developed based on Nagel & Schreckenberg’s

[1992] single road model. The model is comprised of four lanes with additional rules causing

cars to stop. In contrast to most existing signalised intersection models, cars occupy the cells

shared between two lanes in this model. Expressions for traffic flow rates as a function of turn

proportion are derived using a mean-field approximation (MFA). Deviations from the MFA

at the intersection cells are necessary to ensure conservation of cars is obeyed in the approx-

imation. Results are compared with simulation and measurements from a video-based traffic

flow/turn count estimator. A time-averaged background frame is subtracted from individual

frames to yield a movement frame. Fixed-size blob (car) detection on this movement frame

provides the basis for blob tracking. The individual car detections in each frame are com-

bined with detections from past and future frames using Reid’s [1979] Multiple Hypothesis

Tracking. Turns are detected by manual selection of each lane’s polygon in a video frame; the

lane (location) of origin and exit are mapped to left, right and nonturn decisions. Three ap-

proaches to calculating a flow-vs-turn-proportion relationship are attempted. Measurement,

experiment and simulation all reflect a negative relationship between left turns and flow rate.

Model simulation agrees with MFA results except at low proportions of left-turning cars and

high proportions of right-turning cars, during which the MFA yields a lower estimate than

the simulated flow.
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Chapter 1

Background and Motivation

Traffic models mostly aim to relate the flow of vehicles to other factors—vehicle density or

light timing, for example. The earliest models described the flow of traffic along single-lane

highways. Newer models add multiple lanes, roundabouts, T-intersections and signalised in-

tersections. These models usually postulate some behaviour of traffic at a local or individual

vehicle scale and seek the corresponding relationship between macroscopic variables.

Intersection models can be used to predict the results of traffic rules (for example allowing

left or right turns), generate more efficient light timing, and studying the sources of intersec-

tion phenomena like gridlock. In most signalised intersection models presented so far, certain

interactions inside intersections are discarded or simplified. In some models, vehicles jump

from an approach to an exit without occupying the shared road inside the intersection. In

other cases, conflicting traffic streams do not occur during the same signal phase, thereby

reducing the number of interactions occuring inside the intersection. For these reasons, ex-

isting intersection models do not reflect the effect of turn proportion on flow rate.

This thesis presents a signalised-intersection model which incorporates interactions inside

intersections in more detail than existing models. These additional interactions define the

1



2

stopping rules for vehicles entering and inside the intersection. This allows examination of

the effect of turn proportion on the vehicle flow rate at the intersection. The model consists

of four intersecting lanes with rules prevent collisions and gridlock while allowing traffic to

flow.

Existing traffic and intersection models are reviewed with attention to the treatment of cells

inside the intersection and the turning behaviour of vehicles in this chapter. The intersection

model presented in Chapter 2 is composed of four intersecting single-lane roads based on

an existing model [Nagel & Schreckenberg 1992] plus additional rules governing the

vehicles at or immediately before the cells in the intersection. These rules serve to prevent

collisions while allowing vehicles to proceed through according to the normal rules of the road.

Vehicles may turn left across oncoming traffic and turn right on red lights provided it will

not result in a collision. One of the new rules is necessary to prevent gridlock. The model’s

flow rate is computed by repeated simulation at varying turn proportions in Chapter 3. The

flow-vs-turn-proportion expressions are also estimated by applying a mean-field approxima-

tion to the model in Chapter 4. This approximation treats the velocity and density as not

varying from cell to cell allowing a simplified analytical approach to estimating the flow rate.

Finally, a video-based vehicle tracking application is used to measure the flow rate vs turn

proportion in Chapter 5. The video tracking uses blob detection combined with Multiple Hy-

pothesis Tracking [Reid 1979] to estimate vehicle locations and velocities. Using initial and

final position, turns are detected. By recording the turn decision and reprocessing the video,

the flow-vs-turn proportion can be calculated at each frame. The resulting empirical data is

compared with simulated and analytical results in Chapter 6. The proportion of left-turning

traffic is universally found to have a strong negative effect on traffic flow. The simulation and

mean-field approximations give similar results but the approximation tends to underestimate

flow at low proportions of left-turning traffic and high proportions of right-turning traffic.

The measured flow rate shows a weak positive relationship with the proportion of nonturning
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traffic and no clear relationship with the proportion of right-turning traffic.

1.1 Traffic models

A common goal of traffic models is to describe flow in terms of other variables. Most often,

the flow is taken to be a function of density; the function giving flow in terms of density

is know as the fundamental diagram. Figure 1.1 is taken from a signalised intersection but

shares some characteristics with the fundamental diagram of highway traffic. At low densi-

ties, traffic is nearly free to travel at its maximum velocity and flow is approximately linear

in density. At higher densities, decreased vehicle velocity causes a net decrease in traffic flow

and a higher velocity variance.

One reason for the popularity of the cellular automata (CA) models is their ability to

reproduce features of the flow-density measurements as in Figure 1.4. In particular, the

CA models yield a higher slope in the low-density "free-flow" region and a lower, negative

slope in the "congested" high-density region. The CA models also have a higher variance in

the congested region as exhibited in Figure 1.1. The interpretation of the higher-variance

downward segment of the fundamental diagram is a source of contention among traffic re-

searchers [Brockfeld et al. 2008]. Kerner’s [2004] "Three-phase theory" argues that the

negatively sloped region in the fundamental diagram is composed of two separate phases.

The existance and characterization of multiple phases is a major goal of many traffic mod-

els [Levine et al. 2004, Farhi et al. 2011].

The development of traffic models has generally been in the direction of increasing discretiza-

tion in order to facilitate simulation. Early partial differential equation-based models were

continuous in density, position and time. These macroscopic models share similarities with
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Figure 1.1: Fundamental diagram, Harbord St. & Huron St., Toronto, Ontario

the Navier-Stokes equations [Kerner & Konhhauser 1993, Velasco & Marques 2005].

Daganzo [1995] criticizes fluid dynamic models for exhibiting backward flow in some sit-

uations due to the anisotropic (directionally asymmetric) nature of fluid in contrast to the

forward/reverse asymmetry of traffic.

A class of models based on cellular automata [Nagel & Schreckenberg 1992] allow

representation of anisotropic particles. Cellular automata are discretized in space and time

which facilitates fast simulation. Petri net-based traffic models [Farhi et al. 2009] use a

similarly discretized representation with the additional capability of allowing asynchronous,

local state transitions. In contrast, cellular automata follow a parallel update procedure in

which all cells undergo state transitions simultaneously.
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1.1.1 Lighthill-Whitham Model

Lighthill & Whitham [1955] described the propagation of density waves on long roads

using a partial differential equation (PDE) in density and position. No attempt was made

at theoretically deriving a relationship between flow and density; the authors assume only

that flow is a function of density. This assumption combined with continuity conditions on

traffic density allows the authors to derive the propagation speed of density waves along high-

ways. The PDE could be discretized for simulation but it would still retain its difficiencies:

symmetrical dynamics, an unspecified flow-density relationship and no apparent method of

incorporating turning rules. Lighthill and Whitham discuss the impact of periodic red and

green lights on a traffic stream. An approximation is given for flow capacity as a function of

light timing. The propagation of shock waves caused by the green-red transition is discussed.

No vehicles are assumed to turn left or right at a junction. The resulting analysis provides

an explanation of queue growth at intersection as a function of total intersection capacity.

The location of the "shock wave" (discontinuous density) is traced as a red light turns green.

When the intersection is operating below the maximum flow capacity, the shock wave will

travel through the intersection during a green light.

1.1.2 Gas Kinetic models

Prigogine & Andrews [1960] used a particle physics-based integral differential equation

derived in a manner similar to the Boltzmann equation for the time evolution of particle

density distribution functions. A version of the Lighthill-Whitham equations with an added

diffusive term can be derived from Prigogine’s gas kinetic models [Helbing 1996].

1.1.3 Car following models

Chandler et al.’s [1958] "car following model" describe the movement of chains of vehicles

on a long highway as a function of the gp ahead. Acceleration is considered to be a function
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of gap size. Herman et al. [1959] perform stability analysis on chains of vehicles all following

the same gap-based feedback law.

1.1.4 Petri nets

Petri nets and hybrid petri nets (combining discretized with continuous states) [Di Feb-

braro & Sacone 1998] have been applied to investigate unified models of transportation

networks including roads, junctions and control devices. The state and transition rules are

discretized; in some models the transitions are stochastic . Petri nets are capable of repre-

senting multiple asynchronous processes. Graphical representations of Petri nets allow some

correspondence with the geometric aspect of transportation systems.

1.1.5 Cellular automata and TASEP

Von Neumann [1966] first introduced the notion of cellular automata (CA), systems dis-

cretized in position, state and time. Elementary CA follow local transition rules; the next

state of each cell is a function of the cell’s current state and the state of adjacent cells.

Nonelementary CA use transition rules which may be a function of some local neighbour-

hood. Navier-Stokes equations can be derived from CA models under a wide variety of model

assumptions [Wolfram 1986]. In addition, CA have been studied as models of traffic. In

particular, a simple one-dimensional CA known as Wolfram rule 184 is the basis for many

traffic models. The state of each cell is binary (interpreted in traffic models as being either

occupied or unoccupied by a vehicle). A lane is represented as a one-dimensional lattice with

a cell at each site. The rule’s name is derived from the elements of its state transitions table

(Table 1.1) [Wolfram 2012] by converting to base-10 representation. Each cell’s next state

is a function of its own state and that of the adjacent cells. The upper row in Table 1.1

enumerates all possible three-cell state combinations. The bottom row indicates the state

of the middle cell after one time step. Put simply, an occupied cell moves to the right if

possible. Otherwise, it does not move. This is a CA version of a transport process. A model
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known as the "asymmetrical simple exclusion process" (ASEP) is closely related to rule 184;

the standard ASEP allows particles to move in either direction with some probability. The

totally asymmetrical simple exclusion process (TASEP) requires particles to move in only

one direction. In contrast to rule 184, each lattice site is updated asynchronously in the

TASEP.

Table 1.1: Rule 184 state transitions

Current state 111 110 101 100 011 010 001 000
Next state 1 0 1 1 1 0 0 0

Figure 1.2 illustrates the behaviour of an 8-segment road initialized with only a single cell

occupied.

Figure 1.2: Rule 184 example

1.1.6 Nagel-Schreckenberg model

Nagel & Schreckenberg [1992] extended the rule 184 CA with two additions. First,

occupied cells ("vehicles") can now move with an integer speed vmax instead of only one cell

per timestep. Second, a randomized braking step is introduced: In addition to braking to

avoid collisions, vehicles now also decelerate one unit randomly with probability p. The road

is toroidal, therefore the model is translation invariant; all cells are connected in the same

manner. The state transition rules of this model—the NaSch model for short—are given in

detail below. The ith vehicle’s velocity at timestep k, vi(k) is updated once per timestep

according to the following rules. The headway (distance to next vehicle) for vehicle i is
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written hi.

1. vi(k + 1/4) = min(vmax, vi(k) + 1)

2. vi(k + 2/4) = min(h(i), vi(k + 1/4))

3. With probability p, vi(k + 3/4) = max(vi(k + 2/4) − 1, 0) otherwise vi(k + 3/4) =

vi(k + 2/4)

4. Advance each vehicle by v sites

Acceleration and braking are asymmetrical; the vehicles can only accelerate by one unit per

timestep while braking can occur at any rate up to vmax per timestep. This acceleration-

deceleration asymmetry is reflected in its fundamental diagram (Figure 1.4). Note that the

slope of the initial segment (increasing flow with density) is steeper than the slope of the

decreasing segment. This is shown experimentally using Monte Carlo simulations [Nagel &

Schreckenberg 1992] and analytically using mean-field approximations in [Schreckenberg

et al. 1995].

Figure 1.3 shows a series of initial and final states after one timestep with vmax = 1. The first

sequence illustrates a vehicle moving forward; this occurs with probability p. The second

sequence illustrates the random-braking rule; this occurs with probability (1− p). The third

sequence illustrates the collision braking rule; cars do not move forward if a collision would

result. The fourth sequence illustrates unimpeded movement: no collisions can occur at time

k = 2 and the probabilistic braking has not occured so all vehicles move forward.

An important feature of this model is its fundamental diagram for two reasons. First, it

reflects the asymmetry observed in real traffic flow-density curves. Second, it reflects the

increased flow variance at high density. The asymmetry in the positive and negative slopes

of the flow curve is a result of the asymmetrical acceleration and braking rules; it is possible

to decelerate at any rate up to vmax per timestep while vehicles may only accelerate by one
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Figure 1.3: State transition illustrations

unit per timestep. The increased variance of the flow rate at higher densities is caused by

the random braking. When the braking probability is set to zero, no variance in flow rate

(from run to run) at higher densities is observed. At vmax = 1 and p = 0 the NaSch model

degenerates to rule 184.

The boundary conditions in the NaSch model are usually taken to be toroidal. This means

that if a vehicle is at site i moving at velocity v such that i+ V > N where N is the length

of a lane, the vehicle’s destination site will be i+ V −N . This justifies the assumption that

the traffic density c and other statistics are equal for each cell because the lattice index can

be shifted without affecting the dynamics.

1.1.6.1 Mapping CA model state to macroscopic variables and measurements

Formally, the macroscopic density variable c is given by:

c =
∑N

i=1 δi

N
(1.1)
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Figure 1.4: Simulated NaSch flow density curve

where N is the number of cells in a lane and δi is an indicator variable:

δi =


0 if cell i is unoccupied

1 otherwise
(1.2)

The average velocity vavg is given by

vavg =
∑N

i=1 vi∑N
i=1 δi

(1.3)
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where

vi =


velocity of vehicle i if δi = 1

0 otherwise
(1.4)

The net flow is then given by

J = vavgc (1.5)

The left-turn proportion variable L is given by

L =
∑N

i=1 Li∑N
i=1 δi

(1.6)

where

Li =


1 if cell i is occupied by a left-turning vehicle

0 otherwise
(1.7)

and similar expressions give the right turn proportion R and straight-through proportion T .

Individual cells are normally considered to represent a distance of 7.5 m based on the amount

of area a single vehicle occupies in a complete jam [Nagel & Schreckenberg 1992].

Allowing free traffic (at vmax = 5) to map to 120 km/h results in one timestep representing

approximately 1 second. The slowest speed (1 cell per timestep) maps to 24 km/h.

1.1.7 Traffic model summary

The trend in traffic modeling appears to be in the direction of microscopic simulation. Sys-

tems based on CA have been implemented to simulate large networks in real time [Esser &

Schreckenberg 1997]. Extensions to CA-based traffic models encapsulate a wide variety

of phenomena (multilane traffic [Kanai 2010], jamming in bus routes [O’Loan et al. 1998]).

The ease of stating rules programmatically is an attractive feature of CA-based models. Con-

sider the systems of integral/differential equations that would be necessary to state the rules

of traffic at an intersection in a Lighthill-Whitham or car-following model. Although possible,
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it is more intuitive to state rules of traffic in discretized form. Both Petri nets and CA allow

discretized rules. These two approaches share many similarities; their technical differences

do not significantly distinguish their ability to represent traffic phenomena. It appears that

CA are becoming the framework of choice for statistical models of traffic based on recent

literature reviews [Chowdhury et al. 2000, Maerivoet & De Moor 2008].

Table 1.2: Traffic models

Type Symmetrical particles Macroscopic Continuous
Kinematic wave yes yes yes
Boltzmann gas no no no
Car following no no yes
Petri net no no no

Cellular automata no no no

Table 1.2 summarizes the most well known models for single-lane traffic.

1.2 Existing intersection models and extensions to the

Nagel-Schreckenberg model

Various intersections models based on cellular automata have been proposed. In several cases,

the models are used to study multi-intersection dynamics. Simplified models allow a user

some control over flow rate variables but often do not accurately represent the interactions of

the traffic within the intersection. Often only a subset of normal manoeuvres/turn decisions

are available.

1.2.1 Biham-Middleton-Levine model

The Biham-Middleton-Levine (BML) model [Biham et al. 1992] was an early description

of two-dimensional traffic flow; this was not an attempt at describing intersections in a

geometrically realistic manner but an attempt at studying jamming as a two-dimensional

phase change. The BML cells are located on a two-dimensional lattice; each cell represents a
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sort of intersection. Cars do not turn in intersections, they only wait for conflicting vehicles

to pass. This model can be thought of as the limiting approximation where some area is

composed entirely of intersections with zero-length roads and vehicles always pass straight

through each intersection heading either north or east. Figure 1.5 illustrates the BML model

with vehicles travelling either north or east. The BML model can be considered to be a

two-dimensional analogue of rule 184.

Figure 1.5: Biham-Middleton-Levine model

1.2.2 TASEP with crossing

Nagatani [1993] extended the totally asymmetric simple exclusion process (TASEP) to

systems with a crossing of two one-dimesional lattices (Figure 1.6). Dependence of flow

on particle (traffic) density is investigated. Shock formation resulting from the crossing is

compared with shocks resulting from a "collision." Dynamic phase transitions are found to

occur successively with increasing density. Nagatani states that the results are the same using

parallel or random sequential site updates. This model can be interpreted as an unsignalised

intersection; the only reason a vehicle would not enter the intersection is occupation by

another vehicle.
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Figure 1.6: TASEP with crossing

1.2.3 Unsignalised intersections

Ruskin & Wang [2002] describe a cellular-automaton model for unsignalised intersections.

This model extends the TASEP intersection by allowing integer speeds and allowing turning

from a single-lane minor (smaller) road to the two-lane major road. The effect of variation

in gap size for which a driver is willing to enter a conflicting stream is investigated. Model

flow rates are calculated with varying driver decision strategies and varying turn proportions.

The characters inside cells in Figure 1.7 describe the rules allowing a vehicle at the stop sign

to enter the intersection. For the vehicle at the stop sign to enter, cells marked 0 must

be unoccupied; cells marked a must be either vacant or occupied by right-turning vehicles;

cells marked b must not be occupied by a right-turning vehicle. In the signalised intersection

model described in Chapter 2, similar rules are employed where a vehicle is allowed to proceed

dependant on the turn decisions of vehicles in nearby cells. Figure 1.7 illustrates the cells

whose occupation states are checked when a vehicle at the minor (northbound) approach

attempts to enter the intersection.
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Figure 1.7: Unsignalised Intersection

1.2.4 Rotary (Chopard) model

Chopard et al. [1996] describes an intersection model (Figure 1.8 in which cars enter the

intersection giving priority to vehicles already in the intersection and vehicle exiting is con-

trolled by a binary flag, the value of which is not specified by the model. This allows an

implementation to mimic the characteristics of various intersection types; for instance, the

flag can be randomly selected or switched periodically to imitate a signalised intersection.

For this reason, the Chopard model may be a useful predictive tool for networks larger than

a single intersection. However, the model is not predictive of flow rates at the intersection

level; these are manually specified by the user.

Figure 1.8: Chopard model
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1.2.5 Dallas intersection

Rickert & Nagel [1997] describe a microsimulation of multilane intersections (Figure 1.9)

in the the Dallas/Fort Worth area which treat vehicles as jumping across the intersection,

never occupying common cells. This effect is pointed out and a suggested workaround is

to introduce an additional braking probability at the transfer points. This strategy suffers

from the same problem as the Chopard model in the sense that it may be a useful tool for

studying larger networks of intersections but it does not explain intersection-level flow rates;

it provides a model to generate a given flow rate. A similar criticism is that this strategy

requires introduction of additional variables which should (or could) be produced by a model

instead.

Figure 1.9: Dallas intersection

1.2.6 Signalised two-road NaSch model

Foulaadvand & Belbaasi [2008] introduce a model of a signalised intersection with two

roads, one travelling north and one travelling east (Figure 1.10). This model describes the

effect of a traffic light on straight-through traffic but does not allow turning vehicles. The

authors consider the effects of various signal timing strategies on flow rate. Foulaadvand

& Belbasi [2011] investigates an extension allowing turning.
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Figure 1.10: Foulaadvand Belbaasi model

1.2.7 Tonguz-Viriyasitavat-Bai model

A recent example [Tonguz et al. 2009] (TVB model) describes a four-way signalised inter-

section model in pseudocode. Like other CA-based intersection models, the TVB model uses

the NaSch model roads plus additional rules at the intersection. The pseudocode does not

fully specify some aspects of the simulation. In particular, vehicles are said not to move if the

destination street is congested but no precise definition of this term is presented in context.

In addition, vehicles are said to travel to the "destination street" upon certain conditions

being satisfied; this seems to imply that the vehicles do not actually occupy the intersec-

tion center. This would eliminate the possibility of gridlock occuring. However, Figure 1 in

Tonguz et al. [2009] shows vehicles apparently occupying the intersection centers.

1.2.8 Freund Pöschel model

Freund & Pöschel [1995] introduce another CA-based model for an unsignalised inter-

section. Every cell in a two-dimensional lattice is considered to be a four-way intersection,

similar to the BML model. As in previous models, the vehicles do not occupy the center of

the intersection; they jump from approach queue to destination lane. The effects of global



18

velocity on average vehicle density are investigated.

1.2.9 Rosenblueth-Gershenson model

Rosenblueth & Gershenson [2011] introduce a two-lane signalised intersection model

capable of representing many of the features of a signalised four-lane intersection with the

obvious exception of using two lanes instead of four. The potential for gridlock is elimi-

nated when only two lanes intersect, simplifying the rules significantly. The requirement of

preventing collisions is also simplified in the case of only two lanes.

1.2.10 Intersection travel time model

Lawniczak & Di Stefano [2009] present a model used for simulating total travel time

through a series of roads and intersections. This intersection model is similar to the Dallas

intersection in which vehicles jump from the end of one NaSch lane to the start of another

lane. The rules vehicles obey when crossing intersections are not specified.

1.2.11 Intersection model summary

Table 1.3: Intersection models

Type signalised Four lane Conflicting turns Inner geometry
Kinematic wave yes no no no

BML no no yes no
Nagatani no no yes yes
Chopard yes yes yes yes

Ruskin & Wang no yes yes yes
Rickert & Nagel yes yes no no

Foulaadvand & Belbaasi yes no no yes
Rickert & Nagel yes yes no no

TVB yes yes yes no
Freund & Pöschel no yes yes no

Rosenblueth & Gershenson yes no no yes
Lawniczak yes yes no no
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All of the above models (with the exception of the kinematic wave extension) are variations

on two-dimensional analogs of rule 184 or the TASEP. The BML model intuitively seems to

reflect a city composed of one-way lanes better than a single intersection. Nagatani’s model

appears to be the earliest model of a single intersection connecting two one-dimensional lanes.

The effects of traffic density and signal timing on intersection networks have been investigated

by several authors [Schadschneider et al. 1999, Kanai 2010]. The effect of turn proportion

on flow rate has not been investigated to the author’s knowledge. Chopard et al. [1996]

notes that gridlock may occur in the rotary model if vehicles are not allowed to reroute.

This type of gridlock occurs within a single intersection as in Figure 1.11; an intersection

fully occupied by any combination of these turn choices will result in a permanent deadlock.

Chopard’s solution is to allow vehicles to reroute. Another way of addressing gridlock is to

specify rules which prevent the gridlock-causing configurations from occuring.

Figure 1.11: Gridlock permutations

The problem of specifying the rules for an intersection model can be broken down into two

subproblems; maintaining flow and avoiding collisions. The following chapter details a set of

rules which achieve these goals and allow all movements at a standard four-way intersection:

left & right turns, and through traffic. Each vehicle passes through cells of perpendicular

lanes that it crosses.



Chapter 2

Proposed Intersection Model

This chapter describes an arrangement of four single lanes (called northbound, southbound,

eastbound and westbound) based on the Nagel-Schreckenberg model, illustrated in Figure 2.1.

Each road follows approximately the same rules as the NaSch model. Vehicles near the inter-

section follow modified rules: in addition to the reasons for braking under NaSch dynamics

(avoid collision with vehicle ahead and random braking), vehicles now brake to avoid colli-

sions with vehicles in other lanes and to avoid gridlock.

A vehicle in the NaSch model will brake to avoid colliding with the vehicle ahead. Vehicles

may not pass each other in a single lane; therefore, only rear-end collisions are possible. A

NaSch vehicle on a single road only has to consider its own movements and the headway to

the vehicle in front in order to avoid collisions. In an intersection, vehicles from separate

lanes may be heading toward the same cell. Vehicles now must check whether vehicles in

other lanes are headed toward the same cell and yield priority correctly if so.

The goal of preventing collisions is accomplished by restricting vehicle movements. The rules

which restrict vehicle movements are only effective in specific situations. These rules are a

function of location, the turn decision of the vehicle (left/right/non-turning), the location

20
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and turn decisions of nearby vehicles and the state of the intersection light (red or green).

The situations in which these rules apply are enumerated in detail below. A yellow light

(assumed to mean that cars should stop if they possibly can) would be exactly equivalent to

a red light if cars are modeled as being able to stop at any rate up to vmax per timestep. For

this reason, yellow lights are not included in the model.

In addition to preventing collisions, traffic flow must be maintained. If vehicles’ motion is

restricted too much, no movement will occur. This can manifest itself in a variety of ways.

If the priority level of conflicting traffic is undefined, neither vehicle may safely proceed; this

would cause both vehicles to wait indefinitely. Gridlock may occur if vehicles enter into a

situation in which no movement is possible. These situations must be prevented in addition

to collisions. These situations are prevented through further restriction of vehicle movement

so that vehicles may not proceed into gridlock.

Finally, some mechanism causing a vehicle to move from one lane to another is necessary. In

the single-lane NaSch model, vehicles travel down their lane of origin. In the intersection, a

turning vehicle has a lane of origin and destination. Upon arrival at the lane of destination, a

vehicle must stop travelling in the original direction. This stopping is accomplished through

an additional rule at the intersection. The vehicle then proceeds down the destination lane

in the same manner as a vehicle in the single-lane model.

The rules each vehicle follows are designed to simulate a four-way signalised intersection.

Left turns are allowed during green lights and right turns are allowed during both green and

red lights. Left-turning vehicles move during the same phase as nonturning vehicles (green);

they wait for suitable gaps in the oncoming traffic. Right turning vehicles behave similarly,

only turning right during a red light if a gap in conflicting traffic is available. In addition

to waiting for gaps before turning, vehicles follow additional rules. To avoid gridlock and
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conflicts caused by ambiguous priority levels, vehicles will not enter the intersection under

certain circumstances. Finally, right-turning traffic is obligated to stop at red lights before

entering the destination lane.

The new rules are applied before random braking in the NaSch model. The distance each

vehicle may travel before colliding with the vehicle ahead is called the headway (hi for

vehicle i) in the NaSch model. This intersection model extends the headway function hi

into a function gi which gives the maximum distance a vehicle may travel before colliding or

stopping due to an intersection rule. Let r1...r6 be the distance between a vehicle and the

nearest site where intersection rule r in application, then the extended headway function gi

is now given as

gi = min(hi, r1 . . . r6)

This distance is obtained by considering each cell in front of a vehicle i up to a distance of

vi cells ahead. The first cell which is currently subject to an intersection rule determines

the safe distance. Following the calculation of safe distance, each vehicle may also brake

randomly as in the NaSch model. The state transition rules for this intersection model are:

1. vi(k + 1/4) = min(vmax, vi(k) + 1)

2. vi(k + 2/4) = min(h(i), vi(k + 1/4))

3. With probability p, vi(k + 3/4) = max(vi(k + 2/4) − 1, 0) otherwise vi(k + 3/4) =

vi(k + 2/4)

4. Advance each vehicle by v sites

The state is composed of:

• Location of each vehicle

• Velocity of each vehicle
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Figure 2.1: Signalised Intersection Model

• Turn decision of each vehicle

• Color of light

The static model parameters are:

• vmax: Maximum velocity, vmax ∈ N

• p: Random braking probability, 0 ≤ p ≤ 1

• a: Approach distance, a ∈ N

• s: Signal split - percentage of time the signal is green , 0 ≤ s ≤ 1

• L: Probability of a vehicle turning left, 0 ≤ L ≤ 1

• R: Probability of a vehicle turning right, 0 ≤ R ≤ 1

• T : Probability of a vehicle not turning, 0 ≤ T ≤ 1

• GN,S,E,W : Vehicle generation rate at the first cell in an approaching lane (Figure 2.2).

Each rate may be set individually. A vehicle generation event occurs with probability

G if the first cell in an approach is unoccupied. 0 ≤ G ≤ 1

• DN,S,E,W : Vehicle deletion rate at the last cell in an exiting lane. Each rate may be set

individually. A vehicle deletion event occurs with probability D if a vehicle is about
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to exit the intersection. If the event does not occur, the vehicle is prevented from

travelling beyond the last cell in on the road. 0 ≤ D ≤ 1

The turn proportions are constrained: L + R + T = 1. Vehicles are created in the first cell

of each lane and deleted when they leave the final cell of their destination lane. The turn

decision of each vehicle is initialized randomly with probabilities L,R, T when the vehicle is

created. There are only two signal phases: red and green (no yellow light). This is because

cars are treated as being able to decelerate from vmax to 0 in one timestep. In this situation,

vehicles would treat yellow lights the same as red lights.

Figure 2.2: Static Intersection Parameters

The additional rules active near the intersection can be summarized:

1. Brake if the vehicle under consideration must yield to higher-priority traffic

2. Brake if arriving at red light

3. Brake if light is red and vehicle is travelling straight or turning left
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4. Brake to prevent turning traffic from overshooting destination lane

5. Brake if a conflict could result from ambiguous priority

6. Brake if entering the intersection risks gridlock

For a vehicle moving in any cell, the applicability of each rule is checked at each timestep.

The intersection-specific rules (1-6) do not apply along the entire lane. The maximum dis-

tance at which a vehicle may still be subject to intersection-specific rules is vmax; for example,

if a vehicle is headed towards an intersection during a red light at distance of vmax cells and

speed vmax cells per timestep, braking will be required under rule (2). Thus the region of

intersection-specific rule application is larger for intersections with a higher vmax. In the case

vmax = 1 (used here), the total region in which intersection-related rules apply is only three

cells per lane. This includes the cell immediately before the intersection and the two cells

inside the intersection. Each rule applies on a different subset of these cells. The factors

dictating the applicability of each rule are detailed below. The rules for each lane are the

same. They are described below from the perspective of northbound traffic.

2.1 Rule (1): High priority

Rule (1) represents the notion of waiting for higher-priority traffic to pass. In this context,

high-priority traffic means nonturning or left-turning vehicles travelling forward during a

green light. The trajectory of high priority traffic is calculated for the next timestep; these

cells are "marked" by the high-priority traffic. Lower-priority traffic is prevented from moving

to or through a cell marked by high-priority traffic. Left-turning vehicles are only considered

to be high-priority in their initial direction of travel. This causes left-turning traffic to wait

for nonturning vehicles before proceeding in the direction of the destination lane. Since left-

turning traffic does not mark its trajectory when exiting the intersection in its destination

lane, an additional rule (5) is necessary to prevent it from colliding with right-turning traffic
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entering the intersection.

Low-priority vehicles are blocked by the trajectory of high-priority traffic (indicated by grey

squares) in Figure 2.3.

Figure 2.3: Yielding to high priority

2.2 Rules (2) and (3): Red lights

Rule (2) causes right-turning traffic to stop upon arrival at a red light. In conjunction, rules

(2) and (3) allow right-turning traffic to turn during a red light after stopping while blocking

left-turning and straight-through traffic. It may seem that one rule would be sufficient to

enforce stopping at a red light. However, the fact that right-turning traffic is allowed to

proceed after stopping differentiates this situation from left and nonturning traffic which

must remain stopped at the red light. Figure 2.4 illustrates the requirement for a right-

turning vehicle to stop before turning right; the vehicle must be moving, turning right and

the light must be red. Figure 2.5 illustrates the distinct rule which causes left and nonturning

traffic to remain stopped.
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Figure 2.4: Stopping at red light

Figure 2.5: Waiting at red light

2.3 Rule (4): Turning

Rule (4) prevents traffic from travelling down its original lane once the destination has been

reached. The rules are applied for each lane individually; the turning rule does not activate

when the vehicle is travelling in the direction of the destination lane and so the traffic exits

the intersection. Figure 2.6 illustrates vehicles travelling northbound, stopping to turn left

or right. The vehicles are only considered to be stopped in one dimension (north/south);

they are free to move down the destination lanes (east/west).
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Figure 2.6: Stopping to turn

2.4 Rule (5): Late occupation

Rule (5) prevents right-turning vehicles from entering the intersection if the near-left corner

is occupied by a left-turning or straight-through vehicle heading toward the right-turning

vehicle, illustrated in Figure 2.7. Under normal circumstances, a vehicle turning left from

the eastbound lane would normally not occupy this position while the northbound lane has

a green light. However, it is possible; because of the random braking rule, a vehicle could

potentially stop in any cell it occupies indefinitely. For this reason, the case of vehicles left

over from previous signal phases still occupying the intersection must be considered.

Figure 2.7: Intersection occupied
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2.5 Rule (6): Gridlock

The purpose of Rule (6) is to prevent gridlock. Figure 2.8 illustrates a car stopping out-

side the intersection in order to prevent gridlock (as in Figure 1.11) from occuring. In the

formulation of anti-gridlock rules, the Nagel-Schreckenberg model’s randomized braking rule

plays an important role. Any vehicle could remain stopped with nonzero probability for

an unlimited amount of time. Therefore any cell may contain a vehicle which entered in a

previous light phase. Vehicles entering the intersection need to deal with these "left-over"

vehicles from a previous phase.

Without Rule (6), long simulation runs with any left-turning traffic eventually reach gridlock.

As noted by Chopard et al. [1996], this can be considered a metastable phase in which a

normal flow-density curve exists until gridlock occurs. The Chopard model deals with gridlock

by allowing vehicles to reroute; in fact, each vehicle has no inherent turn choice and simply

exits on the intersection probabilistically. No such rule is necessary for models which do not

include cells inside the intersection because gridlock cannot occur.

Figure 2.8: Gridlock



Chapter 3

Simulation

The intersection model is studied empirically by running the model under varying parame-

ters while sampling the macroscopic model states (density c, velocity vavg, turn proportions

L,R, T ). The results of simulating a single NaSch lane are presented first to provide a source

for comparision for the intersection simulation results. Single-run simulations are compared

against ensemble-averaged (Monte Carlo) simulations.

3.1 Implementation details

Both the road and intersection models are implemented as MATLAB scripts. A "single run"

of a model occurs over a fixed number n of timesteps (k = 1 to k = n). The NaSch model is

toroidal, therefore the total number of vehicles is conserved. In a single NaSch simulation run,

the vehicles are all created at time k = 1. In contrast, the intersection model is nontoroidal

with vehicles being created and deleted at first and last cells in each lane throughout the

simulation.

3.1.1 Code Architecture

The intersection model simulation is structured like four normal NaSch roads run in paral-

lel with the addition of intersection-specific rules at certain positions. These positions are
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cells inside the intersection plus all cells up to a distance vmax from the intersection on the

approach. State propagation is performed in two substeps at each iteration. The trajectory

of high-velocity traffic is marked (the path of nonturning vehicles or left-turning vehicles in

their original lane is projected forward for the next timestep to block lower priority traffic

in the application of rule 1); then the allowed trajectories of lower-priority traffic can be

calculated. The safe distance gi is calculated for each vehicle. Following this, the normal

NaSch dynamics are applied.

3.1.2 Sampling

Sampling the model’s flow rates is done by an outer loop which set the intersection parame-

ters, records macroscopic states and incrementally adjusts parameters every simulation run.

The long-term average of macroscopic parameters (flow rates and densities) is recorded to

sample the parameter-flow rate relationships.

3.2 Nagel-Schreckenberg simulation

The time-occupation plot of a single NaSch lane simulation run is illustrated in Figure 3.1.

Black pixels represent vehicles/occupied cells. The vehicles travel to the right according to

the NaSch rules detailed in Chapter 1. Backward-moving traffic jams are seen to emerge

spontaneously as a result of the randomized braking step in the NaSch model. As the NaSch

model is toroidal (vehicles leaving the last cell reappear at the first cell), the long-term

statistics (density c, flow rate J) of each cell should be equal.
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Figure 3.1: Single run of NaSch model

3.3 Intersection simulation

Each lane in the intersection model is sampled in the same manner as a single NaSch lane in

Figure 3.1. Vehicles arrive at an equal rate in all directions and L = 0.25, R = 0.25, T = 0.5

for all lanes (that is, 25% of vehicles turn right, 25% turn left and 50% do not turn) in

Figure 3.2. The intersection is at the midpoint of each lane. The periodic clusters of vehicles

in the centre of each lane are queues forming at a red light. The queue formation on the

northbound and southbound roads is offset by a 90 ◦ phase shift from queue formation on

the eastbound and westbound roads. The vehicles in southbound and northbound roads

travel in opposite directions (left to right and right to left respectively) as do the vehicles in

westbound and eastbound directions.

Excluding the boundaries at the beginning and endpoint of each lane, the total number of
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Figure 3.2: Single run of 4-way signalised intersection

vehicles is conserved. However, each lane is "nonconservative" considered on its own. This is

illustrated in Figure 3.3 in which vehicles only arrive from the north and southbound lanes

and only exit from the east and westbound lanes (all vehicles turn either left or right). In

the north and southbound lanes, the intersection consumes (sinks) vehicles; in the east and

westbound lanes, the intersection is a source.

Figure 3.4 illustrates the time-occupation plot of a single lane in an intersection averaged

across runs. After averaging away the random influence of each individual run, the expected

(most likely) component of the intersection state from run to run is obtained. The resulting

density distribution is clearly position and time dependendent unlike a single NaSch lane.

Figure 3.4 was averaged over 1000 runs of 150 timesteps each.

3.3.1 Steady-state assumptions

In calculating the flow rate, the intersection simulation is assumed to be in steady-state

operation. The time required to reach steady state varies with approach length a and vmax.
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Figure 3.3: Signalised intersection, individual nonconservative lanes

Figure 3.5 shows Monte Carlo simulations of intersections with approach lengths a = 40 (left

side) and a = 250 (three figures on the right side). The transient response time is increasing

in a and nonmonotonic in vmax as indicated by the changes in response time as vmax is varied

from 1 to 5 to 30.



35

Figure 3.4: 1000-run average of intersection occupation

Figure 3.5: Transient response for various parameter settings



Chapter 4

Analytical Approximation

Mean-field approximations were used by Nagel & Schreckenberg [1992] to find ana-

lytical approximations to the fundamental diagrams of the single-road NaSch model. The

average traffic flow rate in the intersection model of the previous chapter can be approxi-

mated analytically using similar assumptions.

All states of the model (density, velocity) are treated as probability distributions independent

of position and time. This is illustrated graphically in Fig. 4.1. The update equation for the

resulting probability distributions is formulated using the transition rules and the resulting

linear equation is solved for the steady state density and velocity distributions.

4.1 Analytical approximation to the Nagel-Schreckenberg

fundamental diagram

Schreckenberg et al. [1995] gives a description of the mean-field method as applied to the

NaSch model in order to approximate the fundamental diagram (flow vs density relationship).

The derivation is summarized here as the intersection is treated with the same method in

the next section.

Consider a model with vmax = 1. The probability of a site i being unoccupied at timestep k

36
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Figure 4.1: Graphical Illustration of Mean Field Approximation

is denoted as d(i, k). The probability of a site being occupied by a vehicle of velocity zero

is denoted c0(i, k) and the probability of a site being occupied by a vehicle of velocity one is

denoted c1(i, k). The total probability of a site being occupied is denoted c = c0 + c1. The c

and d distributions take into account all possible states for the model, therefore:

d(i, k) + c0(i, k) + c1(i, k) = 1 (4.1)

The time is considered to take only integer values; k+1/4, k+2/4, k+3/4 can be considered

stages in the calculation between k and k + 1. After appling the NaSch acceleration rule,

all vehicles accelerate by one step. This includes the stopped vehicles (vi = 0). If vmax = 1,

vi = 1 for all vehicles. The probability distributions are given by

c0(i, k + 1/4) = 0

c1(i, k + 1/4) = c0(i, k)
(4.2)

To avoid collisions, each vehicle must brake if the distance to the next vehicle is less than or

equal to vi. This can be thought of as the probability of a vehicle travelling at vi = 1 times

the probability of the next cell being occupied. The distributions after applying the collision
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avoidance braking are

c0(i, k + 2/4) = c0(i, k + 1/4) + c(i+ 1, k + 1/4)c1(i, k + 1/4)

c1(i, k + 2/4) = c1(i, k + 1/4)d(i+ 1, k + 1/4)
(4.3)

During the randomized braking rule, vehicles are randomly decelerated by one unit. This

occurs with probability p for each vehicle at each timestep. After the randomization stage

(q = 1− p), the probability distributions are

c0(i, k + 3/4) = c0(i, k + 2/4) + pc1(i, k + 2/4)

c1(i, k + 3/4) = qc1(i, k + 2/4)
(4.4)

Finally, after the movement stage the distributions are

c0(i, k + 1) = c0(i, k + 3/4)

c1(i, k + 1) = c1(i− 1, k + 3/4)
(4.5)

After removing dependence on time and position, the following update equations result:

c0 = (c+ pd)c0 + (1 + pd)cc1

c1 = qd(c0 + c1)
(4.6)

Solving for c0 and c1,

c0 = c(c+ pd)

c1 = qcd

(4.7)

Since the total flow is given by c1, this expression can be taken as an approximation to the

fundamental diagram for the case vmax = 1. This approximation underestimates flow in the

NaSch model when all cells are updated in parallel. The approximation becomes exact under

random-sequential updates [Schadschneider & Schreckenberg 1998]. This is due to
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short-range correlations between cell states under parallel update which do not exist under

random-sequential update. In particular, an unoccupied space is more likely to appear in

front of an occupied space than the mean field theory would predict under parallel dynamics.

Because d = c − 1, it can be seen that c1 is a negative quadratic in c (traffic density) and

therefore yields a flow rate relationship like that in Figure 1.4. The asymmetry of Figure 1.4

is not present in Figure 4.7 as this solution only deals with vmax = 1. A derivation of the

case where vmax = 2 yields an asymmetrical flow-density curve.

4.2 Mean-Field Approximation, from single-lane to in-

tersection

In the single-lane case, the mean-field assumption of translation and time-invariant statistics

is justified on the grounds that each cell really does obey the same laws across time and space.

The probability distributions of vehicle density and velocity are equal everywhere. A time-

occupation diagram averaged across enough runs would yield a uniform grey image. This is

not the case for an intersection. Figure 4.2 illustrates the time and position independence of

a single NaSch lane as compared to the time and position-dependent intersection lane. This

decreases the validity of the mean-field approximation for intersections. Certain phenomena

are not captured by a mean-field approximation; in particular, gridlock is not represented in

the mean-field solution. This is because gridlock relies on a deterministic blocking effect; if

gridlock occurs, it blocks the intersection completely. Under the mean-field approximation,

gridlock only causes a statistical delay equal to the proportion of blocked vs unblocked cells.

If, for example, the blocked cells (4 inner intersection cells) represent 10% of the total cells in

the intersection, the mean-field approximation only sees a 10% chance of each vehicle being

affected by gridlock in any position.
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Figure 4.2: Translation dependence

4.3 Intersection Mean-Field Approximation

The extension of the above solution method to the proposed intersection model inserts the

additional stopping rules relevant to the intersection in the braking stage. Under the mean-

field assumption, the probability of an intersection-specific stopping rule p(rule) being in

effect for a particular vehicle can be broken down into:

• p(location): the probability of the vehicle being located in a position for the rule to

apply

• p(turn): the probability of a vehicle’s turn decision being subject to the given rule

• p(light): the probability of the given rule being in effect based on the light state

• p(occupation): the probability of other vehicles occupying positions which trigger the

rule
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p(rule) = p(location)p(turn)p(light)p(occupation) (4.8)

Each of the intersection stopping rules can be cast into the form above.

4.3.1 Deviation from mean-field approximation

The approximation that both density and average velocity are equal everywhere violates

conservation equations at the cells inside the intersection. If two approach lanes have av-

erage velocity v and density ρ, the resulting flow is J = ρv from each approach and the

total inflow is 2ρv. The velocity mean-field approximation is assumed within the intersection

and the density at the intersection is calculated as the sum of the inflowing densities (that

is, assuming intersection-cell vehicle density ρi = 2ρ and velocity vi = v instead of ρi = ρ

and vi = 2v). The inflow per cell inside the intersection can be calculated by summing all

incoming streams: 3L+2T +R, as show in Figure 4.3 This value appears as the denominator

Figure 4.3: Trajectories passing through intersection cell

in the expressions for the probability of several rule’s application. In contrast, without the

above reasoning, the same denominator would appear as L+R + T = 1.
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The following symbols help to reduce the number of expressions in the mean-field calculation.

CI = 3L+ 2T +R

fp = T + L

fg = 4L+ 2T
CI

(4.9)

4.3.2 Rule (1): High priority

Rule (1) provides the criteria for admitting right and left turns into higher-priority traffic

streams. It is in effect for left-turning traffic when crossing the stream of on-coming traffic

(during a green light) and for right-turning traffic entering the intersection during a red

light. This rule also applies when a straight-through or left-turning vehicle is caught in the

intersection after the light turns red although such cases should be rare. Figure 4.4 illustrates

cells subject to these rules for northbound traffic only.

Figure 4.4: Priority Yielding Effect Area

The cells for which this rule is in effect can be treated separately to illustrate how the rule

applies in each situation.

The priority rule is in effect at the uppermost cell (left figure in Figure 4.5) when left-turning

traffic is yielding to left-turning or straight-through traffic during a green light. In this
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Figure 4.5: Individual Priority Yielding Cells

situation:

p(location) = 1
4 + 2a

p(turn) = L

p(light) = s

p(occupation) = c1fp

(4.10)

When right-turning traffic yields to straight-through or left-turning traffic during a red light

(right figure in Figure 4.5):

p(location) = 1
4 + 2a

p(turn) = R

p(light) = 1− s

p(occupation) = 2c1fp

CI

(4.11)

Owing to the probabilistic braking rule, a situation can occur where a straight-through or

left-turning vehicle stops inside the intersection until the light changes color (turns red). This

vehicle must now yield to straight-through traffic with the right of way. The middle image

of Figure 4.5 illustrates the cell where a vehicle would stop under this rule.
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p(location) = 1
4 + 2a

p(turn) = L+ T

p(light) = 1− s

p(occupation) = c1fp

(4.12)

4.3.3 Rule (2): Red light

Rule (2) causes all vehicles to stop upon arrival at the intersection during a red light; this

is only necessary for right-turning traffic during a red light. Left and right turning traffic

stop too; however, they are also dealt with by rule (3) whereas this rule allows right-turning

traffic to continue after stopping initially. Figure 4.6 illustrates the area subject to this rule

for northbound traffic.

Figure 4.6: Stop Upon Arrival Effect Area

When vmax = 1, the probability of rule (2) affecting a vehicle is 0; this rule is only noticeable

for vehicles with vmax > 1 since vehicles accelerate by 1 unit per timestep if below vmax.

The vehicle’s acceleration at the start of the next timestep means that when the vehicle’s

movement is calculated at the end of the next timestep, it is in the same state whether it

had been subject to rule (2) or not.
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4.3.4 Rule (3): Red light, right turning

Rule (3) prevents left-turning and straight-through traffic from entering the intersection

during a red light, while allowing right-turning traffic to proceed. Figure 4.7 illustrates

the area subject to this rule for northbound, left-turning or straight-through traffic.

Figure 4.7: Waiting at Red Effect Area

For rule (3):

p(location) = 1
4 + 2a

p(turn) = L+ T

p(light) = 1− s

p(occupation) = 1

(4.13)

4.3.5 Rule (4): Turning

Rule (4) causes turning traffic to stop travelling down the original (approach) road upon

arrival at the destination lane. This rule applies in different locations for left and right-

turning vehicles. The image on the left-hand side of Figure 4.8 illustrates the area subject

to rule (4) for northbound, left-turning traffic and the image on the right illustrates the area

subject to rule (4) for northbound, right-turning traffic.

Like rule (2), this rule does not affect vehicles with vmax = 1. Each vehicle can reduce
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Figure 4.8: Left and right turn stop effect areas

its speed upon arriving at the turn lane by 1 unit at most which will be regained in the

acceleration phase at the start of the next timestep.

4.3.6 Rule (5): Late occupation

Rule (5) prevents right-turning vehicles from entering an intersection if the cell in the near-left

corner of the intersection is occupied by a left-turning or nonturning vehicle heading toward

the right-turning vehicle. Out of the six possible trajectories which a vehicle in a given

cell may have, three could conflict with traffic if the light changes. This yields occupation

probability cfg. Figure 4.9 illustrates the area subject to this rule for right-turning traffic

during a green or red light.

Figure 4.9: Intersection Occupied Stop Effect Area
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For rule (5):

p(location) = 1
4 + 2a

p(turn) = R

p(light) = 1

p(occupation) = cfg

(4.14)

4.3.7 Rule (6): Gridlock

Rule (6) prevents left-turning and straight-through traffic from entering an intersection if the

cell on the opposite side of the intersection is occupied by a left-turning or straight-through

vehicle from a previous green light or a left-turning vehicle travelling in the same direction.

This prevents gridlock from occuring, a situation which can never resolve in this model. As

in rule (5), the possibility that a vehicle can stop for an unlimited amount of time means

that vehicles can remain in the intersection from previous lights. Out of the six possible

trajectories which a vehicle in a given cell may have, three could conflict with traffic if the

light changes. This yields occupation probability cfg. Figure 4.10 illustrates the area subject

to this rule for northbound, left-turning and straight-through traffic during a green light.

Figure 4.10: Gridlock Stop Effect Area
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For rule (6):

p(location) = 1
4 + 2a

p(turn) = L+ T

p(light) = s

p(occupation) = cfg

(4.15)

4.3.8 Combining the rules

The probability of braking due to intersection-specific rules can be calculated for each cell

individually. The probability of braking in a given cell is equal to the probability of at least

one of the rules being active for that cell. For a given lane of traffic in the intersection (take

northbound for example), there are only three cells at which the intersection rules apply.

Rule (1) is an example of a rule which may apply at any of the three possible intersection

cells on the northbound lane as in Figure 4.4. Starting with the bottom cell (just ouside the

intersection), the rules which may be in application are (1), (2), (3), (5) and (6). Rule (1) at

this location only applies to right-turning traffic during a red light. Rule (2) is not included

in Figure 4.11 since traffic with vmax = 1 is not affected. Rule (3) only affects left-turning

and straight-through traffic during a red light. Rule (5) only affects left-turning traffic during

a green light and right-turning traffic during a red light. Rule (6) affects left-turning and

straight-through traffic during a green light. For the following derivation, vmax = 1.
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Figure 4.11: Bottom cell stop-rule probability tree

In the middle cell, the rules which may be in application are (1) and (4). Rule (1) causes

traffic stopped in the intersection to yield to incoming straight-through traffic. Rule (4)

prevents right-turning traffic from travelling beyond the destination lane. Rule (4) is does

not affect traffic when vmax = 1 and is not included in Figure 4.12.

In the top cell, the rules which may be in application are (1) and (4). Rule (1) causes left-

turning traffic to yield to oncoming straight-through traffic during a green light. Rule (4)

prevents left-turning traffic from travelling beyond the destination lane. Again, Rule (4) does

not affect traffic when vmax = 1 and is not included in Figure 4.12.

Summing probabilities of the branches resulting in application of braking rules yields the
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Figure 4.12: Middle cell (left) and top cell (right) stop-rule probability trees

total probability PI of an intersection-related braking rule being in application.

PI =
s((T + L)cfg + Lc1fp) + (1− s)(L+ T +R(cfg + 2c1fp

CI
) + c1f

2
p )

4 + 2a (4.16)

This expression can be simplified and rearranged: rule (1) in the middle cell (the c1f
2
p term)

is dropped because the mean-field approximation is likely to overestimate it. Rule (1) only

occurs in the middle cell if cars are stuck in the intersection after the light changes, i.e. at

the light transition. The occurance of rule (1) should therefore be related to the frequency of

light switching, with a longer light period corresponding to a lower rate of occurances of rule

(1) in the middle cell. For a period of 30 timesteps (equivalent to approximately 30 seconds

of real time), an intersection would undergo one switching timestep. The relative rarity of the

switching timesteps compared to nonswitching timesteps is the reason for the overestimation

of the rate of rule (1) occurance in the middle cell by the mean-field approximation. PI
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becomes

PI =
sfp(cfG + Lc1) + (1− s)(fp +R 2c1fp

CI
) +Rcfg

4 + 2a (4.17)

This expression is somewhat easier to interpret. The terms multiplied by s are those whose

probability increases with the proportion of green light. The terms multiplied by (1− s) are

those whose probability increases with the proportion of red light. The numerator terms not

multiplied by s or (s− 1) are those whose probability is not related to the proportion of red

or green light. Inside the s term, the expression fpLc1 is due to left-turning traffic yielding

to oncoming traffic. The expression fpcfg is due to left and straight-through traffic avoiding

gridlock. Inside the (1 − s) term, fp is due to left and straight-through traffic stopping at

red lights. The expression R 2c1fp

CI
derives from right-turning traffic yielding to higher priority

traffic during a red light. The Rcfg term outside s or (s − 1) in the numerator is due to

right-turning traffic stopping because of the "intersection occupied" rule (rule 5).

PI,avg =
(sNS + sEW )(fp(cfg + Lc1)) + (2− sNS − sEW )(fp +R 2c1fp

CI
) + 2Rcfg

4 + 2a

PI,avg =
fp(cfg + Lc1) + fp +R 2c1fp

CI
+ 2Rcfg

4 + 2a

(4.18)

A symmetric light timing of sNS = sEW = 0.5 is assumed. The above expression for PI can

be integrated into the original solution for the NaSch model as follows. The initial update

rule (acceleration) is applied as in the standard NaSch model.

c0(i, k + 1/4) = 0

c1(i, k + 1/4) = c0(i, k)
(4.19)

In Figure 4.3, traffic brakes according to the standard braking rule. Here the proportion of
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traffic braking due to the intersection-specific rules can also be inserted. Figure 4.3 becomes

c0(i, k + 2/4) = c0(i, k + 1/4) + (c(i+ 1, k + 1/4) + PI)c1(i, k + 1/4)

c1(i, k + 2/4) = c1(i, k + 1/4)(d(i+ 1, k + 1/4)− PI)
(4.20)

The randomization rule is applied in the same manner:

c0(i, k + 3/4) = c0(i, k + 2/4) + pc1(i, k + 2/4)

c1(i, k + 3/4) = qc1(i, k + 2/4)
(4.21)

The movement update is also applied in the same manner:

c0(i, k + 1) = c0(i, k + 3/4)

c1(i, k + 1) = c1(i− 1, k + 3/4)
(4.22)

Removing dependence on time and position:

c0 = c(c+ pd+ qPI)

c1 = qc(d− PI)
(4.23)

Together, equations 4.17 and 4.23 give a rough description of the relationship between

intersection parameters and flow rates for the case vmax = 1. As would be expected, a higher

PI yields lower flow. The limit lima→+∞ PI approaches zero; as the approach lengths grow

longer, the dynamics approach that of a single NaSch road. Equation 4.23 is not an expression

of c1 in terms of other variables—c1 is a parameter of PI . Solving for c1 independently, split

PI into a linear function of c1:
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PI,avg = A+Bc1

A = cfpfg + fp + 2Rcfg

4 + 2a

B =
fpL+ 2R fp

CI

4 + 2a

(4.24)

Now c1 can be written in terms of A and B:

c1 = (qc)(d− A)
1 + qcB

(4.25)



Chapter 5

Data Collection

A video-based vehicle tracking system was designed in order to verify the predictions of

this model. Individual turns must be detected in order to measure the macroscopic turn

proportions (L,R, T ). The number and velocity of vehicles must be measured to estimate

density c (linear with vehicle count since the area under observation is constant) and average

velocity vavg.

This is accomplished using preprocessing to isolate the moving parts of the image followed

by Multiple Hypothesis Tracking (MHT) [Reid 1979], a data-association algorithm used in

assigning object detections to multiple targets (vehicles). MHT (and underlying Kalman

filters) provides an estimate of a vehicle’s velocity and position in the image plane (pixel

coordinates). Turns are detected based on the location of initial and final positions.

5.1 Video Recordings

Videos were recorded at Robart’s Library, University of Toronto (130 St. George St., Toronto,

ON, Figure 5.1) at the intersections of Huron and Harbord street, St. George and Harbord

street and Huron and Sussex street. These are all signalised intersections with four approaches

as in the model; however, they have left-handed turning lanes which reduce the negative

impact of left-turning vehicles.

54
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Figure 5.1: Video footage location

Figure 5.2: Measurement association

5.2 Multiple Object Tracking

The problem of tracking multiple objects can be separated into two subproblems. First,

objects are detected. This yields an estimate of object locations. However, it does not yield an

estimate of speed and is susceptible to false positives. Furthermore, simply detecting objects

independently in each frame does not allow for turn detection. A method for associating

detections with individual vehicles is necessary. In Figure 5.2, any of the four measurements

in the left-hand figure could be a new vehicle or false positive. Each of the measurements in

the right-hand figure could be a new vehicle, a false measurement or another measurement

from a vehicle existing in the first frame. Even considering only two frames, a significant
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Figure 5.3: Position and velocity estimates

number of measurement association permutations must be considered. Multiple Hypothesis

Tracking provides a position and velocity estimate for a variable number of vehicles using a

rolling window to defer measurement assignments until more frames are recieved. The green

circles indicate position covariance in Figure 5.3 and the red lines indicate velocity estimates.

5.2.1 Background Subtraction

The first step in performing object detection is background subtraction. For this, an estimate

of the background is necessary (Figure 5.4). This is done by averaging all frames in a video

(processing is done offline although a rolling background calculation might be possible for

real-time applications). The background estimate is then subtracted from each video frame.

5.2.2 Blob fitting

At the first stage, object detection is perfomed independently on a frame by frame basis.

The two-dimensional cross correlation is calculated between the thresholded movement image
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Figure 5.4: Background frames (left) and movement frames (right)

Figure 5.5: Blob deletion

and a circular prototype of a fixed radius (selected by hand for each video to be processed).

This operation smooths out fine details in individual vehicles and removes high-frequency

noise in the image. The peak value in the cross correlation is taken to be the most likely

positon to find a vehicle. The radius surrounding this point is cleared in the thresholded

movement image (Figure 5.5), thereby accounting for the vehicle. This operation is repeated

for however many vehicles are expected in an image. The number of expected vehicles is

approximated as a linear function of the number of white pixels in the movement frame.

The entire image’s cross correlation is not recomputed; only the area affected by the last

cleared region. Figure 5.6 illustrates the change in the cross-correlation image after erasing

a single vehicle from the movement mask. The affected region is limited to the area around

the deleted vehicle. Recalculating only this region can reduce blob-fitting computation time
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Figure 5.6: Cross correlation after deletion

Figure 5.7: Object detections

by 5-10 times. Each peak location is recorded as the location of a vehicle. The results of this

operation are show in Figure 5.7. The code used to perform blob fitting has been released to

the public on the Mathworks file exchange at the following URL:

http://www.mathworks.com/matlabcentral/fileexchange/33953-blob-fitting

5.2.3 Multiple Hypothesis Tracking

MHT is a popular technique for associating object measurements with tracked objects origi-

nally described by Reid [1979]. Blackman [2004] discusses common implementation varia-

tions. In its simplest form, MHT considers all possible associations between object detections

and tracked objects. The initialization frame is treated at the root node of a hypothesis tree.

Each node contains a single possible interpretation of measurement-object assignments. As

http://www.mathworks.com/matlabcentral/fileexchange/33953-blob-fitting
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each successive frame arrives, each node is expanded into all possible interpretations of the

new data. The state is estimated by selecting the object-measurement assignment sequence

yielding with the highest probability according to individual object dynamics and object

measurement statistics. The original algorithm’s computation requirements are exponential

in object number and time and is therefore not realistic for implementation. The mea-

surement assignment tree can be pruned heavily to achieve a serial (near real-time) object

tracking algorithm as described by Cox & Hingorani [1996]. This is achieved through

an implementation of Murty’s algorithm [Murty 1968] which provides a list of the k-best

measurement assignment hypotheses. More complex pruning methods described by Cox &

Hingorani [1996] (splitting and merging) are not used in the MHT implementation used

for this study.

5.3 Object Movement Model for Multiple Hypothesis

Tracking

MHT requires an underlying Kalman filter motion and observation model for individual

vehicles in order to evaluate branch probabilities. A standard two-dimensional translation

model is used. Position x, y and velocity vx, vy are represented in image coordinates (pixels).

The motion matrix A corresponds to translational motion. Observation matrix H only allows

direct observation of position.

ẋ = Ax x =



x

vx

y

vy


y = Hx (5.1)
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A =



1 dt 0 0

0 1 0 0

0 0 1 dt

0 0 0 1


H =

 1 0 0 0

0 0 1 0

 (5.2)

Q =



(dt)3

3
(dt)2

2 0 0
(dt)2

2 dt 0 0

0 0 (dt)3

3
(dt)2

2

0 0 (dt)2

2 dt


R =

 35 0

0 35

 (5.3)

All measurements are pixel coordinates in the image plane. A standard Kalman filter is

used in calculating measurement assignment probabilities; Q and R are the process and

observation covariance matrices. These motion models are taken from Cox & Hingorani’s

[1996] two-dimensional movement tracking implementation. The measurement noise variance

R was tuned by hand.

5.4 Murty’s K-Best Assignment Algorithm:

Rectangular Implementation

Some method of generating the k-best measurement associations is necessary for a practical

MHT implementation as described in Cox & Hingorani [1996]. Murty’s [1968] algorithm

provides measurement associations (instances of the linear assignment problem) in order of

the optimal association followed by the k − 1 next-best associations. An existing script by

Eric Trautmann available through MATLAB MathWorks implemented Murty’s algorithm

for square matrices. This applies when the number of measurements is equal to the number
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Figure 5.8: Approach and exit region polygons

of targets being tracked. In this application, the number of measurements may be more or

less than the number of vehicles in each frame due to false positives, multiple measurements

of a single vehicles or misses. The existing code was adapted by the author to treat the

case of rectangular assignments as well as square. Note that this implementation does not

allow assignment of multiple measurements to a single vehicle; it only allows consideration

of measurement sets which are not equal in size to the target set. In principle, it is possible

to assign multiple measurements to a vehicle using MHT. In this application, the chances

of detecting multiple measurements from a single vehicle is mostly a function of perspective

distortion; vehicles closer to the camera appear larger. This effect is minimised by using a

long focal length and recording footage from a high perspective. Further correction could be

performed using a perspective transformation calculated using the geometry of the camera

placement relative to the intersection.

5.4.1 Turn detection

5.4.1.1 Turn detection with initial and final position

Polygons covering the approaches and exits (Figure 5.8) are manually selected. By tracking

the polygon a vehicle occupies at the time of detection and deletion, the vehicle’s turn decision

can be detected. For objects originating or exiting outside of any polygon, the trajectory is

considered unknown. Figure 5.9 illustrates the results of polgyon-based turn detection. By
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Figure 5.9: Instantaneous Turn Proportion Measurement: Red (left), Green (right), Blue
(straight)

storing the results of object tracking, each object’s initial and final positions may be known

at each frame. This allows an instantaneous estimate of which way each vehicle is turning;

this in turn allows an instantaneous estimate of turn proportion variables L,R, T .

5.4.1.2 Turn measurement causality

One problem with trying to measure the effect of turn proportion on flow rate is that turn

detection is easiest after the turn has occured. Therefore, any measurement of the current

turn proportion using a delayed detection gives an outdated estimate. This problem is

addressed by recording the full trajectory of each vehicle and saving it for postprocessing.

This allows the turn decisions of all vehicles to be known upon detection.

5.5 Code Architecture

The software for tracking vehicles and counting turns was written in a combination of C#

and MATLAB languages (Figure 5.10). The MHT algorithm requires a tree structure and as

MATLAB has no native tree structure, some alternative is needed. The two components com-

municate through MATLAB’s .NET object support. The code is a combination of existing
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(open source) and newly written code.

Figure 5.10: MHT Implementation Architecture
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5.6 Sources of error

5.6.1 Vehicle definition

To track individual vehicles, some notion of what constitutes an individual vehicle is neces-

sary. Summed intensity of the movement frame might seem naive; it often results in multiple

detections of large vehicles. However, multiple detection of large vehicles can provide more

information about the effective amount of traffic in an intersection. A single detection of

each vehicle plus a size estimate would ideally provide the most accurate description of the

situation but failing this, multiple detections might be preferrable to single indistinguishable

detections.

5.6.2 Pedestrians

Pedestrian traffic appears to affect left- and right-turning traffic significantly. Pedestrians

are not represented at all in the intersection model although there is nothing preventing this.

The object tracking algorithm attempts to identify pedestrians by position of origin and can

eliminate them from vehicle counts. Pedestrians are not counted or tracked accurately; the

object tracking filters are tuned for vehicle movement and size. This results in individual

pedestrians being ignored and large groups being detected. It can be difficult to filter out

all pedestrian detections based on location (outside the road area of the intersection) since

pedestrian groups tend to coalesce at crosswalks, right on the edge of the intersection area.

One possible way to eliminate this would be to perform some visual a posteriori classification

of detected objects. Detections classifed as originating from vehicles and pedestrians could

be tracked by parallel MHT algorithms with individual filter parameters.

5.6.3 Object interference

The prototype cross correlation function can yield a peak between two nearby vehicles instead

of two separate peaks for each vehicle. The prototype can be shrunk but this has the tradeoff
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of detecting smaller, unwanted objects more often.

5.6.4 Poor background model

Errors in calculation of the background model come from several sources. First, the exposure

autocorrections described above mean that different parts of the video are taken at differ-

ent exposure values. Second, stationary vehicles in the frame can cause a negative image

when they leave and thus false positives. Also, when calculating the background for a long

video, roundoff error becomes an issue. If a small enough fraction of each frame is added

to the background estimate, division error becomes significant. Downsampling the video for

background calculation is one way of mitigating this problem.

5.6.5 Road-colored cars

Grey and black vehicles tend to be detected poorly since subtraction of the background yields

a low difference. Again, eliminating problems due to exposure correction and by extension

a poor background model could allow a lower threshold in the movement mask calculation.

This would provide a better chance of detection cars similar in color to the road.

5.7 Performance

Figure 5.1 provides a manual measurement of the vehicle count error at 30 second intervals

from a sample video. The larger errors are due to frames with small vehicles at the far corner

of the intersection and larger vehicles closer to the camera.
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Table 5.1: Vehicle Count Error Measurements

Time (mm:ss) Error (fraction) Error (%)
00:00 0/4 0
00:30 1/2 50
01:00 3/9 33
01:30 1/6 17
02:00 0/2 0
02:30 0/2 0
03:00 6/10 60
03:30 3/8 37
04:00 3/10 30
04:30 7/13 54
05:00 3/9 33
05:30 2/7 29

Table 5.2: Turn Count Error Measurements

Turn Total Counted Error (absolute) Error (%)
Left 7 4 3 43
Right 9 20 11 120

Straight 81 62 19 23



Chapter 6

Measurements Compared to Model

Predictions

6.1 Flow-vs-turn proportion

The results of the mean-field approximation, simulation and video measurement are compared

below. The data used in this section is taken from the intersection at Harbord St. and St.

George St. in Toronto over a two-hour period. The turn counting software reports 17 left

turns, 66 right turns, 128 nonturning vehicles, 2387 trajectory paths discarded for being

too short (under 30 pixels or about 3 car lengths), 181 discarded for not originating and

exiting in a known approach-exit polygon pattern. The mean field solutions assume vmax = 1

and simulated results are provided at vmax = 1. Normally, vmax = 5 is considered to be

more realistic [Nagel & Schreckenberg 1992] so simulated results are also provided at

vmax = 5.

6.1.1 Flow-vs-left-turn proportion

Left-turning traffic (L) has the most negative effect on flow (compared to right-turning and

nonturning traffic) in the mean field approximation and simulated results (Figure 6.1. The

67
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Figure 6.1: Flow-vs-left-turn proportion, simulated

mean-field approximation overestimates simulated flow at turn proportions above L = 0.2

(Figure 6.2) and underestimates below.

6.1.2 Flow-vs-right-turn proportion

In simulation (Figure 6.4), right-turning traffic has a strong positive effect on traffic flow. A

sharp upward slope at very high right-turning proportions in simulation could indicate that

right-turning traffic is inhibited less by itself than by left-turning or nonturning traffic. At

vmax = 1 this is expected; the intersection barely hinders pure right-turning traffic since the

intersection is never occupied by conflicting traffic. A small proportion of nonright-turning

traffic is sufficient to force right-turning vehicles to wait through traffic lights. The mean-field

approximation does not appear to capture this effect (Figure 6.5). No trend is apparent in

measured date (Figure 6.6).

6.1.3 Flow vs nonturning proportion

In simulation and the mean-field approximation, nonturning traffic proportion T has a nearly

neutral effect on traffic flow at low velocities (Figure 6.7). The effect of increasing T is
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Figure 6.2: Mean-field and simulated comparison of flow vs. left turn proportion(red: simu-
lated, blue: mean field)
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Figure 6.3: Measured flow vs left-turn proportion. Error bars show one standard deviation
of measurement spread.
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Figure 6.4: Flow vs right-turn proportion, simulated

positive at higher velocities. At vmax = 5, nonturning traffic has the advantage of not

being required to stop at the intersection while turning traffic is required to stop at least

once. The cost of stopping is minimal for vmax = 1 and so at low speed, right turning

traffic is not at a significant disadvantage compared to nonturning traffic. The mean-field

approximation appears to slightly overestimate simulated flow rates except at very low values

of T (Figure 6.8). No relationship is apparent in Figure 6.9.

6.1.4 Two dimensional flow vs turn proportion

The flow rate as a function of turn proportions L and R can be visualized as a triangle in

the L−R plane. Flow rate is indicated by intensity; the highest flow rate in simulation is at

R = 1 in the upper right corner (Figure 6.10). The mean-field results for vmax = 1 resemble

the simulated results and the measured data displays a similar trend although sampling is

sparse (6.11); more measurements would be necessary to clearly visualize the relationship.

Simulation agrees fairly well with the MFA results (which generally overestimates the sim-

ulated flow rates). At low values of L and high values of R, the situation is reversed: the

MFA underestimates simulated flow rates. In general, the video-based measurements are very
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Figure 6.5: Mean-field and simulated comparison of flow vs. right turn proportion(red:
simulated, blue: mean field)
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Figure 6.6: Measured flow vs right-turn proportion. Error bars show one standard deviation
of measurement spread.
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Figure 6.7: Flow vs straight-through proportion

scattered implying the presence of other factors which dominate the effect of turn proportion,

at least over the time-scale considered.
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Figure 6.8: Mean-field and simulated comparison of flow vs. straight through proportion(red:
simulated, blue: mean field)
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Figure 6.9: Measured flow vs straight-through proportion. Error bars show one standard
deviation of measurement spread.
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Figure 6.10: Flow vs LR plane, simulated

Figure 6.11: Mean field approximation (left) and empirical sampled (right) on L-R plane



Chapter 7

Concluding Remarks

7.1 Discussion

The intersection model presented here attempts to represent the effects of turning traffic

more realistically than existing models. The mean-field approximation, a common tool in

CA model analysis, is applied here to characterize the effects of turn proportion in this model

that previous models often lack. Based on the wide scatter of the measured data, it appears

that either the flow rates are not strongly influenced by the turn proportion as an average

quantity over the time scale of interest or the video measurement methods are too inaccurate

to discern the effect. Longer measurements might yield a clearer relationship. The mean-field

approximation and simulation may still be useful as a way to roughly examine the long-term

effects of alternative traffic rules.

The video-based vehicle tracking and turn detection software has potential for improvement.

No large barrier exists to real-time implementation. More complex pedestrian and vehicle

movement models could assist in classification and tracking. With a high viewpoint and

during daylight, this system could provide higher-quality feedback than more expensive al-

ternatives like inductive loops. However, requiring a camera to be located on a tall building
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is inconvenient - a ground-level sensor would be preferable. Ground-level cameras must

deal with additional problems; perspective distortion (nearer objects appear larger), overlap,

smaller field of view. However, in principle the sample low-level blob detection and multi-

ple object tracking methods could be applied. Vehicle detections from multiple ground-level

cameras could be projected onto a shared image, providing the necessary field of view without

requiring a difficult vantage point. Calibration of the cameras to the shared image is another

additional difficult not present using the higher vantage point.

7.1.1 Sources of error

The video-based vehicle tracking error is high; a wide variety of movement and object types

in the frame cause problems for fixed blob-based MHT. Frequent error types include trackers

switching vehicles; multiple trackers being assigned to a single vehicle; pedestrians being

mistaken for vehicles and vice versa.

One problem with directly comparing the mean-field and simulated results to the measured

results is the difficulty of empirically sampling flow rates evenly at all possible turn propor-

tions. The true distribution of flow-vs-turn-proportion samples is a product of the flow-vs-

(L,R) surface and the distribution of (L,R) values that occur at the intersection. Treating

the (L,R) as a process instead of a fixed value in simulation might yield results closer to the

actual distribution.

Another factor affecting comparison of the measured and simulated results is the time scale.

The measurements were taken from videos over a 2-hour period while simulations can rep-

resent hundreds or thousands of hours. This implies that at least in the short term, turn

proportions are not a major component of intersection dynamics. The existing intersection

models are therefore somewhat justified in neglecting certain interactions inside the intersec-
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tion in favor of simplicity.

Relaxing the symmetry assumptions may improve results quantitatively at the cost of clarity.

However, after relaxing enough simplifying assumptions, full microsimulation of an intersec-

tion system on a vehicle-by-vehicle basis might become an attractive option. Some quantities

may not be useful to considered true macroscopic variables at relevant geometric or time

scales.

7.2 Future directions

7.2.1 Intersection Models

The lack of a clear measured relationship between turn proportions and flow rates indicates

that treating L,R, T as macroscopic variables may not be worthwhile. Detailed microsim-

ulations make fewer assumptions. In some situations (with very high numbers of particles

and long time scales of interest), the computational difficult of particle-level simulations is

unrealistic. However, in the case of traffic, real-time simulation of individual vehicles is pos-

sible. In this case, models for individual vehicles’ behaviour might be more important than

abstractions describing the intersection as one unit.

7.2.2 Video-based vehicle tracking

The video-based tracking system has significant potential for improvement. Interacting Mul-

tiple Model (IMM) Kalman filters could help distinguish between pedestrians, various vehicle

trajectories, cyclists and other moving objects that commonly occur in intersections. Seg-

mentation of the image into road and sidewalk could improve object tracking and detection

by using a geometric model of object occurance probability. Each vehicle’s full trajectory

information (instead of endpoints ) could be used in turn classification. Now, only the initial

and final vehicle locations are used. Using the entire trajectory for turn classification would
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eliminate errors caused by a tracker initializing or disappearing in the wrong location (a fairly

common occurance since vehicle deletion and detection tends to occur in the same narrow

regions at the edge of the image). The implementation of MHT in this case does not split

and join paths; this can yield significant increases in look-ahead ability for the object tracker

which would result in an overall improvement of accuracy.
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